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Abstract—Supercomputers are prone to frequent faults that
adversely affect their performance, reliability and functionality.
System logs collected on these systems are a valuable resource of
information about their operational status and health. However,
their massive size, complexity, and lack of standard format makes
it difficult to automatically extract information that can be used
to improve system management. In this work we propose a novel
method to succinctly represent the contents of supercomputing
logs, by using textual clustering to automatically find the syntactic
structures of log messages. This information is used to auto-
matically classify messages into semantic groups via an online
clustering algorithm. Further, we describe a methodology for
using the temporal proximity between groups of log messages to
identify correlated events in the system. We apply our proposed
methods to two large, publicly available supercomputing logs
and show that our technique features nearly perfect accuracy
for online log-classification and extracts meaningful structural
and temporal message patterns that can be used to improve the
accuracy of other log analysis techniques.

I. INTRODUCTION

Supercomputers are complex machines built from large
numbers of components. Although these components may be
individually reliable, when aggregated at the scale of hundreds
to tens of thousands of nodes, the probability of individual
component failures and destructive multi-component interac-
tions becomes significant. In particular, large scale machines
such as the ASCI Q and Red Storm have been unusable by
applications 17% and 26% of the time, respectively, due to
system problems [6]. Further, typical mean times between
failures are on the order of hours or days [6], [16], which
results in 10-20 application restarts per day on machines
such as Red Storm, Purple and BlueGene/L [5]. These faults
can occur in many different system components, including
the network, the scheduler, the file system, compute nodes
and applications. Moreover, due to the complex interactions
between different components, many of these faults are related
to each other, with faults in one location/component affecting
other parts of the systems in unanticipated ways. Such complex
interactions make the identification, prediction and localization
of faults extremely difficult.

Systems routinely collect information about the state of
their software and hardware, including fault notifications,
informational status updates as well as behavioral parameters
such as temperature. This information is collected in various
forms such as system, application and console logs [9], as

well as RAS Databases [12]. Therefore, these logs can pro-
vide valuable information for identifying and locating system
faults. However, the large size of these logs makes it nearly
impossible for operators to interpret them manually, which
severely limits their usefulness for managing supercomputing
systems. For example, the log from the BlueGene/L system at
Lawrence Livermore National Laboratory (LLNL) (Table I) [2]
covers 215 days of operation time, contains over 4 million
messages generated at a rate of 15 messages/minute, of which
over 348,460 are alerts. Furthermore, these log-messages lack
any standard format or semantics. Instead, log entries are
generally plain-text messages in natural language written by a
wide variety of developers from different organizations. This
complicates the task of writing automated scripts to extract
the useful information from these log messages.

These issues of system log size and complexity make it
critically important to develop more robust and effective tools
to analyze system logs. Our work is motivated by the following
research questions:
• How can we summarize and standardize the information
contained in the logs?One of the main reasons for the
large size of system logs is the repetition and duplication
of log messages. In practice, the number of different log
message structures is quite small and most log messages are
instantiations of these major structures. In this paper, we use
a textual clustering technique to extract these structures and
remove redundant information, thus reducing log size and
complexity.
• Can we automatically classify log-messages into semantic
categories?A key problem with system logs is the lack of any
embedded semantic information, which has to be determined
manually by system administrators with considerable effort.
In this paper, we use an online textual clustering algorithm to
semi-automatically classify log-messages into administrator-
defined groups. When applied to two publicly available su-
percomputing logs our technique classified log-messages with
more than 99% accuracy with minimal involvement from
the system administrator.Furthermore, our method has a very
small computation overhead and memory footprint, which
is critical given the massive rate at which supercomputers
generate logs.
• How to identify temporally correlated events?Supercomput-
ers exhibit various kinds of events that may be correlated due



to interactions between the system components that generated
them. As such, these correlations represent a valuable source
of information about the system’s operation. We present a tech-
nique to automatically identify these interactions by clustering
groups of log messages using their temporal proximity.

Section II describes the characteristics of supercomputing
logs that we have focused on in this work. Section III presents
our textual log structure extraction method and Section IV
covers the temporal correlation analysis. We then conclude
with a discussion of related work in Section V and a summary
of our contributions Section VI.

II. CHARACTERISTICS OF SUPERCOMPUTING LOGS

In this section we investigate the characteristics of super-
computing logs by analyzing two such publicly available logs.
We start by describing the data-sets we used and then present
the key insights gained through our analysis.

A. Data-set Description

The logs used in this study come from the following
supercomputers: i) BlueGene/L supercomputer at Lawrence
Livermore National Labs (LLNL) and ii) Spirit supercomputer
at Sandia National Laboratories (SNL) (both available from
the Supercomputer Event Log repository [2]). These logs
are available for the durations of 215 days and 558 days
respectively. The BG/L (bgl) logs were collected using the
Machine Management Control System (MMCS) and have a
time granularity of up to a microsecond. Collection of logs
on Spirit was done using syslog-ng with time granularity of a
second. Table I shows the summary description for these logs,
which are described in more detail by Oliner and Stearley [13].

Each line in these log collections contains a time-stamp, a
message category, the source system component as well as a
textual ‘message’that describes some system event. Multi-
line messages, where a single semantic message is broken
up among multiple lines, are treated as multiple messages.
Table II shows sample lines from the bgl log. Both the
logs used in this study were “tagged” by the operators, by
running “regular-expression”-based scripts to associate log-
messages with operator-defined categories of alerts. The bgl
log contains 41 such categories while the spirit log has only 8.
These regular expressions were written after in-depth manual
analysis, and hence closely reflect the ground truths.

The textual message in each line of the logs is composed
of multiple tokens, which are space-separated strings. We
divide these tokens into three categories: i) Words: tokens with
only alphabetic characters. ii) Numbers: tokens that represent
decimal or hexadecimal numbers. iii) Other symbols: tokens
that fall in neither category, such as IP addresses, component
names, etc.

B. Key Characteristics

We looked at the statistics obtained from the logs, and also
analyzed the distribution and frequencies of messages and
message tokens, and gained the following key insights:

Logs are generated at a massive rate:Table I shows that bgl
logs were generated at a rate of 15 messages per minute and
spirit logs at 339 messages per minute.
Logs contain large number of both alerts and informational
messages:Table I shows that there were over 348 thousand
and 172 million alerts in the bgl and spirit logs respectively.
The logs contained many more informational messages, with
approximately 4.4 million in bgl and 100 million in spirit.
Logs contain messages generated by various system compo-
nents:Hardware and software components issue log messages
when they encounter noteworthy events either in their own
state (e.g. segmentation fault) or in their interactions with other
components (e.g. failed socket read). As such, they contain
information about a wide variety of phenomena that may span
multiple system components.
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Fig. 1. Frequency distribution for the messages in the bgl data-set.

Logs contain redundant and duplicate information:Messages
in the logs are frequently repeated over time and multiple
copies of the same message could be generated by various
devices. Figure 1 shows the frequency distribution for the mes-
sages in the bgl logs. The horizontal axis plots the individual
messages in decreasing popularity order and the vertical axis
shows the number of times each one occurs; both axes are
logarithmic. The figure shows that informational messages are
much more common than alerts. Furthermore, informational
messages obey a clear power-law distribution, with a few
messages that occur many times and many messages that occur
a few times. Alerts follow a much more complex distribution,
where common alerts follow a power-law, alerts that occur
less frequently follow a linear distribution, while uncommon
alerts follow a very heavy-tailed distribution. This suggests
that alerts occur in complex circumstances that cannot be
described using a simple statistical summary and thus require
more sophisticated treatment.
Logs have unknown message-structure:While messages in
the logs are generally presented as “free-text”, in practice
they usually represent a relatively small number of syntactic
structures. To illustrate this, consider the following sample
messages:
Error occurred in the module m1 on line 20
Error occurred in the module m2 on line 21
It is clear that these are different instances of the following
structure:
Error occurred in the module <string> on
line <num>



TABLE I
DESCRIPTION OF THE SUPERCOMPUTING LOGS USED IN THE STUDY

Name System Start Date Days Size (GB) Rate (lines/minute) Messages Alerts Alert Categories
bgl Blue Gene/L 2005-06-03 215 1.207 15 4,747,963 348,460 41

spirit Spirit (ICC2) 2005-01-01 558 30.289 339 272,298,969 172,816,564 8
TABLE II

LOG FORMAT AND SAMPLE LOG MESSAGES

Category Time-stamp Date Source Message
- 1117838579 2005.06.03 R04-M1-N4-I:J18-U11 RAS KERNEL INFO cache parity error corrected . . .
APPREAD 1117869872 2005.06.04 R23-M1-N8-I:J18-U11 RAS APP FATAL ciod: failed to read message prefix on . . .
KERNDTLB 1117985502 2005.06.05 R36-M0-NC-C:J05-U01 RAS KERNEL FATAL data TLB error interrupt . . .
KERNRTSP 1118073983 2005.06.06 R22-M0-N1-C:J10-U01 RAS KERNEL FATAL rts panic! - stopping execution . . .
KERNSOCK 1119975388 2005.06.28 R22-M0-NC-I:J18-U11 RAS KERNEL FATAL MailboxMonitor::serviceMailboxes() . . .

Although the set of such log structures is relatively small, it
is still too large to enumerate manually. Also, because the set
of system components is unknown and evolving over time,
system administrators can only stay upto-date by constantly
searching for new log structures.

TABLE III
DISTRIBUTION OF TOKENS IN bgl LOGS.

Token type Number of unique instances
Words 685

Numbers 359051
Other symbols 126470
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(a) Words have double-exponential distribution.
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Fig. 2. Distribution of words in the set of unique bgl messages.

Log-messages contain a small set of unique words but a large
number of numbers and other symbols:Table III shows the
number of words, numbers and other symbols found in the bgl
logs. It shows that while these logs contain a relatively small
number of unique words and names (only 685), they have a
very large number of unique numbers and other symbols. This

suggests that these numbers and other symbols correspond to
the large number of components, parameters and parameter
settings that may exist in a system.
Distribution of words in logs is very different than that found in
natural languages:Figure 2 shows the frequency distribution 1

of each unique token seen in the bgl dataset. The key finding
is that distribution of words follows a double-exponential
distribution (Figure 2(a)), as seen by the fact that is appears as
a straight line when the horizontal axis is plotted using a linear
scale and the vertical axis is plotted using a log-log scale.
This distribution of words in logs is very different from the
frequency distribution of words in natural languages, which are
known to follow a power-law distribution [10]. This indicates
that analysis techniques that are used in natural language
processing may not be applicable here. On the other hand,
the frequency distributions of numbers and other symbols
follow power-laws. This suggests that while the log structures
severely constrain the variety of words that appear in logs,
numbers and other symbols are far less constrained and are
thus much more diverse.
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Fig. 3. Distribution of number of words per message in the bgl data-set.

Messages in the logs tend to be short but variable-length:
Figure 3 plots distribution of number of words in the set of
unique messages, showing that most contain between 5 and
20 words, although messages with as many as 100 words are
also seen.

These log characteristics show that supercomputing logs
are massive, and while they contain free-text messages, these
actually follow underlying syntactic structures that can help to

1To remove the bias due to multiple instances of same messages seen in the
logs, we consider the frequency distribution of tokens in the set containing
unique instances of messages.



summarize log information. In the next section we discuss our
textual clustering methodology to extract the underlying struc-
ture of messages. We also demonstrate how this methodology
can be used in online classification of messages.

III. EXTRACTING THE TEXTUAL STRUCTURE OF LOGS
A. Log Preprocessing and Substitutions

The task of identifying the syntactic structure of messages
is complicated by the large variability of message tokens.
Specifically, while messages typically have short, consistent
structures made up of a small number of words, they are
parameterized by a wide variety of non-word tokens that
represent entities such as port numbers, interrupt numbers and
process IDs. Since these tokens can have a wide range of
values, their existence significantly complicates the task of
identifying the real syntactic structure of messages.

In light of this we preprocess the log to substitute non-word
tokens with unique placeholder tokens. One example of this
substitution is decimal and hexadecimal numbers, which are
replaced with the tokens <int> and <hex>, respectively.
Other examples include node ids and complex file paths such
as /etc/var/tmp1, where “tmp1” is one of a large number
of temporary files. For the discussion in this paper, messages
after this substitution are referred to as s-messages.

B. Extracting Structure through Textual Clustering

Preprocessing condenses the large set of messages into a
much more compact set of s-messages. We extract the true
syntactic structure of s-messages by using textual clustering to
group similarly-structured s-messages into different clusters.
Since logs are generated incrementally over a long period
of time it is important to have a clustering algorithm that
can be easily adapted to work in an online fashion, incre-
mentally producing updated clusters as new messages are
seen. Furthermore, since the structure of s-messages may be
complex, the clustering algorithm must be capable of tolerating
noise. In light of these constraints we adapted the DBSCAN
algorithm [11] for our purposes.

Our online DBSCAN algorithm works on a per-message
basis. During each iteration it has 0 or more clusters and for
each incoming message it computes the distance between the
message and all of the existing clusters. The distance between
a message and a cluster is defined as the minimum distance
between the message and any message inside the cluster. If the
message is sufficiently close to one or more existing clusters
(its distance is below a pre-defined threshold), it is added to
the nearest cluster. Otherwise, the algorithm creates a new
cluster for the message and uses this cluster while processing
subsequent messages. The clustering algorithm thus needs two
key components: a function that defines the similarity distance
between s-messages and a way to compute the threshold for
message-cluster proximity. Both are discussed below.

1) Measuring Similarity: A useful distance metric for s-
messages must be sensitive to their syntactic structure. As
previous studies have shown [18], position of a word in a
message plays an important role in identifying messages that
contain alerts. Indeed, this is a key component of the manually

extracted regular expressions that system administrators often
use to identify alerts. This suggests that the key to identifying
whether two s-messages have the same structure is a distance
metric that is sensitive to the relative positions of words
inside messages. Levenshtein Distance2 [8](LD) is a well-
known distance metric commonly used in text applications
such as spell checking and correction, search query suggestion
and information retrieval [4], [3]. It works by identifying
the minimum number of operations required to transform
one string into the other, where an operation may be an
insertion, deletion, or substitution of a single character. Since
in the case of log analysis, tokens have more semantic value
than individual characters, we modified LD to use insertion,
deletion or substitution of entire tokens as the operation set.

As discussed in Section II-B, messages are variable in
length. Since this can cause LD to bias the clustering algorithm
by giving more importance to longer strings [23], [21], we
correct for this effect by dividing LD by the length of longer
string. We define our Normalized Levenshtein Distance(NLD)
between two messages A and B as follows:

NLD(A, B) =
LD(A, B)

max(length(A), length(B))
,

where LD(A, B) is the token-based Levenshtein Distance
between A and B.

2) Determining the Similarity Threshold for Clustering:
Figure 4 shows the distribution of NLDs between all s-message
pairs in the bgl and spirit logs, with NLD on the horizontal
axis and the fraction of pairs that are separated by that distance
on the vertical axis (log-scale). Both logs show the same basic
pattern. A sizeable minority of s-message pairs are within a
small distance of each other. The number of s-message pairs
separated by intermediate distances is significantly smaller,
with most pairs separated by large distances. This means that
for every s-message, there is a clear separation between s-
messages that are similar to it and those that are not. This
enables us to pick the DBSCAN cluster similarity threshold
by looking at the subset of pairs that are close to each other
(left side of the graph) and picking the NLD value that lies in
the valley immediately following this group of nearby pairs.
This identifies a threshold of NLD=.15 for both the bgl and
spirit logs.

0.0−0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5 0.5−0.6 0.6−0.7 0.7−0.8 0.8−0.9 0.9−1.0
1000

10000

100000

Normalized Levenshtein Distance in the bins of size 0.1 each

P
ai

rs
 o

f s
−

m
es

sa
ge

s

 

 

BlueGene

Spirit

Fig. 4. Distribution of s-messages pairs based on normalized Levenshtein
distance.

2Levenshtein Distance is also known as Edit Distance.



3) Extracting Structural Information:After performing tex-
tual clustering using the DBSCAN clustering algorithm with
the similarity metrics and threshold described above, we
performed an initial evaluation of the quality of the textual
clustering by manually examining the clusters to ensure that
each one corresponds to a well-defined syntactic structure.
This examination is quite tractable since clustering the 215
days and 4.7 million messages of the bgl log results in
only 616 total clusters. We extract each cluster’s structure
by computing the regular expression that can generate the s-
messages in the cluster. Table IV shows the regular expressions
for 10 representative clusters. The well-defined regular expres-
sions generated for each of the clusters identify the syntactic
structures of the corresponding log messages.

C. Online Semantic Log Classification

We now prove that the textual clusters identified by the
above technique correspond to real semantic units of the logs
by using them to infer the semantic meaning of messages.
The bgl and spirit logs have been pre-annotated by system
administrators to classify messages into categories as “infor-
mational messages” or different types of alerts (41 for bgl
and 8 for spirit). This task is labor-intensive, but provides a
good way to connect messages to their semantic meaning. We
extend the above textual clustering technique to automatically
classify messages into semantic categories in an online manner
using a minimal amount of input from the administrator. The
resulting tool can be used to improve the quality of failure
prediction and diagnosis and more immediately, to enhance
administrators’ understanding of system behavior by allowing
them to easily identify parts of the system in need of attention.

Our classification algorithm extends DBSCAN to assign
semantic labels to each cluster. Figure 5 outlines the overall
classification process. Online DBSCAN is applied to all the
messages. If a message is sufficiently close to an existing
cluster, DBSCAN moves it to the cluster and assigns it the
cluster’s label, which may be an informational message or
one of several types of alerts. If not, DBSCAN creates a new
cluster that contains just that message and asks the adminis-
trator to assign this cluster a label. From that point onwards,
all s-messages assigned to this newly created cluster will be
assigned this label assigned by the administrator. Although
we have no access to the original system administrators, we
do instead have logs that have been labeled by the adminis-
trators, which we rely on as a proxy for the administrators’
classification decisions. As such, when we needed to ask the
administrator to label a new cluster, we instead use the label
of the cluster’s initial s-message.

To evaluate the performance of our online classification
algorithm, we used the following metrics: (i) Operator input:
This is the number of times the operator had to label a
new cluster. This metric tries to capture the manual overhead
involved in the process. (ii) Classification accuracy:This was
measured by counting the number of times an s-message’s
label in the (annotated) log matches the label of its cluster.
If the labels matched, the s-message was considered to be

classified correctly, otherwise, it was considered to be mis-
classified.

Figure 6 shows the performance of the classification al-
gorithm on the bgl logs (entire log) and spirit logs (initial
108 days) relative to the cluster similarity threshold (described
above). As the threshold grows larger, the number of clusters
generated by the algorithm, and hence, the operator input,
falls significantly as is becomes easier and easier to connect
each incoming message into an existing cluster. However,
at the same time, larger threshold values result in poorer
classification performance. In particular Figure 6 shows perfect
classification for threshold values upto .1 on bgl and .2 on
spirit, growing worse with more relaxed thresholds. This
validates our use of average distances between message pairs
from Figure 4 to choose a good threshold since these choices
feature few mis-classifications in reality.
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We now explore the detailed performance results of the
classification algorithm, specifically focusing on the bgl logs
with threshold=.15. Figure 7 shows how the total number of
clusters increases as the algorithm operates on the log’s full
215 days of messages (this is also the number of classification
decisions the algorithm needs from the administrator). To
classify bgl’s 4.7 million messages the algorithm requires 616
administrator decisions, approximately 200 of which occur
during the initial learning phase. After this the rate of decisions
remains relatively steady for the remainder of the log at
approximately 2 decisions per day. If desired, this number can
be reduced even further by changing the similarity threshold to
reduce the load on the administrator at the cost of more mis-
classifications. Furthermore, since multiple systems are likely
to execute related software and face similar alerts, it is possible
to significantly reduce administrator work by sharing decisions
across multiple related systems.

A key limitation of the online DBSCAN algorithm is that
as it analyzes more messages, it needs to use more and more
of them to decide whether a given incoming message belongs
in some existing cluster. Specifically, while it took <10ms
to classify messages early on in the log, this time increased
to 1 second per message after classifying 4.6M lines of log
messages. This was due to more comparisons required later
on as the set of s-messages increased with time. We used two
techniques to improve the performance of clustering. First, we



Cluster id Message-structure
1 KERNEL FATAL disable all access to cache directory <int>
2 KERNEL FATAL rts:kernel terminated for reason <int>
3 KERNEL INFO <int>ddr errors(s)detected and corrected on rank <int>,symbol <int>,bit <int>
4 APP FATAL ciod:LOGIN chdir(<token,*>)failed:No such file or directory
5 DISCOVERY ERROR Found invalid node ecid in processor card slot <token,J*>,ecid <EC id>
6 DISCOVERY INFO Node card VPD check:<token,U*1>node in processor card slot <token,J*>do

not match.VPD ecid <EC id>,found <EC id>
7 DISCOVERY SEVERE Problem communicating with service card,ido chip:<hex pair>:<hex pair>:

<hex pair>.java.io.IOException:Could not find EthernetSwitch on port:address <hex pair>
8 APP FATAL ciod:Error reading message prefix after <token,*>on CioStream socket to <int>.<int>

.<int>.<hex pair>:Link has been severed
9 CMCS INFO Controlling BG/L rows [ <int><int><int><int><int><int><int><int>]
10 MMCS INFO idoproxydb has been started:$Name:<token,V1R1*>$ Input parameters:-enableflush

-loguserinfo db.properties BlueGene1

TABLE IV
MESSAGE-STRUCTURES REPRESENTED BY SOME SAMPLE TEXTUAL CLUSTERS EXTRACTED FROM bgl DATASET
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Fig. 6. Performance of message classification on the bgl and spirit logs
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detect duplicate s-messages and only classify each unique s-
message once, which removes the additional comparison costs

and reduces the total number of messages in the clusters.
Further, we impose an upper bound on the size of any cluster,
removing each cluster’s oldest message when the cluster
reached this bound. Figure 8 shows how online DBSCAN
performs after duplicate message elimination as the upper
bound k ranges from 1 to 64 to no bound. Figure 8(a) shows
that average time spent per message drops dramatically from
343ms per message with no upper bound on cluster size to just
47ms when cluster size is bounded. Figure 8(b) explains the
reason, showing how the total number of messages considered
by DBSCAN rises much more slowly when cluster upper
bounds are imposed. Looking at classification performance,
Figure 8(c) shows that even as the maximum cluster size
ranges from 1 to no bound, the rate of mis-classifications



does not change at all, demonstrating the robustness of the
approach. Indeed, as Figure 8(d) illustrates, the only reason to
use limits larger than 1 is to reduce the number of clusters
created, which drop from 616 to 578, with k between 4
and 16 being good choices from the perspective of higher
processing throughput, good classification performance and
small overhead for the administrator.

Finally, Table V summarizes the ultimate effectiveness of
the message classification algorithm on both the bgl and spirit
logs, showing that our online classification algorithm has a
near perfect classifications rate for bgl (More than 99%), and
perfect classification rate for spirit. A total of 4364 messages
(including duplicates) are mis-classified for bgl logs. However,
these 4364 messages are different instances of only 5 unique
s-messages, which can be further broken into 2 information
s-messages being tagged as alert and 3 alert s-message being
tagged with wrong alert labels.

BlueGene Spirit
Number of days 215 109

Total number of log lines classified 4.7M 31M
Number of mis-classified non-unique s-messages 4364 0

Number of mis-classified unique s-messages 5 0
Unique alert s-messages tagged as information 0 0
Unique information s-messages tagged as alert 2 0
Unique alert s-messages tagged as wrong alert 3 0

TABLE V
COMBINED MIS-CLASSIFICATION RATES FOR bgl AND spirit LOGS

IV. TEMPORAL ANALYSIS OF LOGS

Extracting log structure using textual clustering enables us
to organize the large volume of logs at the level of individual
lines. Unfortunately, this approach cannot on its own provide
insight into larger correlations across different events occur-
ring in the system. Such correlations can provide a better
understanding of interactions among different components and
become vital in identifying the causes of system failures and
performance bottlenecks. For example, the failure of a network
card may cause a variety of network applications to throw
error messages. However, since these applications produce
very different messages, the only way to identify their common
cause is to detect the temporal correlation between them.

In this section, we describe a way to automatically detect
such correlations for various textual clusters. The basic idea
behind our technique is to perform temporal clustering of
textual clusters based on the likelihood that different textual
clusters appear at the same time. In addition to identifying
textual clusters that may be causally related, this technique
can extract interesting cross-application dependency patterns
such as different applications reacting to the unavailability of
a common resource. Furthermore, although textual clustering
only considers individual log lines, temporal clustering can
also identify multi-line messages, where all the individual lines
always appear together.

A. Constructing Textual Cluster Time-Series

Temporal clustering of textual clusters works by divid-
ing time into multiple discrete time-slots and counting the

frequency of occurrence of each textual cluster appearing
in a given time-slot. Since textual clusters consist of many
individual s-messages, for each time-slot we increment the
cluster’s counter every time a member s-message appears in
the time-slot. We say that a given textual cluster “is seen”
during a given time-slot if its counter is greater than 0.

Figure 9(a) shows the time-series for a sample data-set taken
from bgl logs. The vertical axis represents different textual
clusters and horizontal axis represents consecutive time-slots.
Each row thus represents a time series for a textual cluster.

B. Time-Series Clustering to Extract Temporal Structure

Figure 9 shows that although the distribution of textual
clusters over time is relatively sparse, there seem to be
correlated occurrences over time across sets of clusters. We
extract this temporal structure by clustering textual clusters
into larger groups of correlated clusters using Agglomerative
Hierarchical Clustering(AHC).

AHC starts with all textual clusters broken up into separate
temporal clusters and merges the two closest clusters succes-
sively until it reaches the target number of clusters. Cluster
distance between temporal clusters C1 and C2 is defined as
the average distance between all pairs of textual clusters in C1

and C2, which has been shown to be robust against noise and
outliers in the data-set [20]. The process of cluster aggregation
stops when the target number of clusters is reached. We
now define the distance function we use with AHC and the
algorithm for picking the optimal number of clusters.

To reliably identify the temporal correlations between two
textual clusters, a distance metric must rely only on time-slots
when either cluster is actually seen and ignore the rest. This is
because the time series are sparse (Figure 9(a)), and any two
textual clusters appear in only a small fraction of the overall
range of time-slots. We thus use the “Jaccard-distance” metric,
which is the ratio of number of time-slots when only one of
the two textual clusters is seen and the number of time-slots in
which either one or both are seen. This metric thus measures
the likelihood of not seeing two textual-clusters together, with
larger Jaccard distance implying a lower likelihood of the two
clusters being correlated.

Formally, consider the time series Ti and Tj for two textual-
clusters i and j respectively, and denote the number of time-
slots where neither Ti nor Tj are seen as M00, the number of
time-slots in which only Ti (Tj) is seen as M01 (M10), and
the number of time-slots where both are seen as M11; then
Jaccard distance between Ti and Tj denoted by Jδ(Ti, Tj) is
defined as:

Jδ(Ti, Tj) =
M01 + M10

M01 + M10 + M11

Figure 9(b) shows pair-wise Jaccard distances for the time-
series of textual clusters in the same sample as in Figure 9(a).

In general it is not possible to identify the correct number
of temporally correlated clusters in the logs before temporal
clustering is performed. As such, our algorithm for picking the
optimal number of clusters works by looking at the quality
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Fig. 9. Temporal analysis on textual-clusters for bgl logs.

of the clusters generated during different iterations of AHC
and choosing the smallest cluster count that optimizes this
quality. We use the average weighted intra-cluster distance
WIntraCD as an estimate of the quality of a given clustering.
WIntraCD(Ci) is defined as the mean of all the pair-wise
distances between the elements of cluster Ci, multiplied by
Ci’s size. Intra-cluster distance is a good estimate of cluster
quality since in good clustering all members of all clusters
will be near each other. The weighting ensures that a given
well- or badly-placed textual cluster will be equally important
regardless of whether it is in a large temporal cluster or a small
one. Further, it ensures that the average WIntraCD increases
monotonically as AHC merges nearby clusters, which makes it
easier to choose the correct number of clusters. Figure 10 plots
the average WIntraCD as AHC progresses from over 600
clusters to 1 (looking from right to left) on the sample from
Figure 9. There is a clear point at 400 temporal clusters where

WIntraCD begins to rise as textual clusters that correlate
poorly with each other begin to be forcibly fused by AHC into
the same temporal cluster. We thus stop AHC at this knee in
the WIntraCD graph since it corresponds to the minimum
number of high quality clusters.

Figure 9(c) plots the pair-wise distances for the time-series
of textual clusters shown in Figure 9, except that the textual
clusters have been reordered to group together ones that fall
into the same temporal cluster. This plot now shows several
solid blocks that correspond to groups of textual clusters
that are all temporally correlated to each other (these textual
clusters consistently appear in the same time-slots) and are
not correlated to other textual clusters (either do not appear
together or appear together inconsistently). This suggests that
there exists significant temporal correlation across different
textual clusters that can be extracted using our temporal
clustering methodology.
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TABLE VI
CLASSIFICATION OF TEMPORAL CLUSTERS

Temporal Cluster Type Count
Node card related event clusters 6

Node start/shutdown 4
Possible repair by system administrator 4

Application events 4
Log-in events 2

Unknown events 3
Temporal clusters with just one textual-cluster 370

Multi-line log messages 22

C. Finding Semantics from Temporal Correlation

Temporal clusters provide us with useful information about
various events happening in the system. Using our method-
ology, we extracted all the temporal clusters for the bgl
dataset. To understand what these clusters mean, we care-
fully examined each temporal cluster and classified them into
different categories of events. Table VI shows the results of
this classification. The first insight is that our methodology
extracts a significant number of correlated textual-clusters
from the bgl logs. These include 22 multi-line log messages
that were broken up into multiple single-line messages (some
clusters contain more than one multi-line message). Further,
20 temporal clusters contain messages that all correspond to
the same system event such as a node starting up or shutting
down (some multi-line messages may also fall into one of
these categories). Table VII provides several examples of these
clusters. This information will not only be useful in extracting
the correlated failures with their possible causes, but can also
help improve system management by identifying performance
bottlenecks and cross-application dependencies. Finally, 370
temporal clusters only contain a single element, suggesting
that these textual clusters do not have a clear correlation with
other clusters. The study of additional temporal relationships
between these messages is part of our ongoing work.

V. RELATED WORK

Most of the previous work on extracting information from
supercomputing logs has mainly relied on techniques based
on regular expressions [1], [7], [14]. However, creation and
maintenance of these regular expressions requires laborious
and active examination of log messages. Also, these logs
change with time due to various system upgrades and new

applications, making it painstakingly difficult for human ex-
perts to maintain these regular expressions.

To utilize the information contained in logs several re-
searchers have proposed the idea of using better visual aids.
Tudumi is an information visualization system proposed for
monitoring and auditing computer logs [19]. Though it is
interesting to visualize these things, still these tool are limited
in their capabilities and can not be used to extract detailed
information from the logs such possible event correlations,
textual structure of the logs, classification of logs into various
categories etc.

Various studies have looked at understanding logs and their
usefulness for detecting faults in supercomputers [18], [13],
[17]. These studies show many interesting characteristics of
these logs. For example, Stearley et. al. [18] showed that
though words alone do not help in detecting alert messages
from logs, words coupled with their position information can
be a powerful indicator for differentiating alert messages.
This key finding suggests that log messages are likely to
contain structure that can separate log messages into semantic
categories. Our work has verified this basic finding, providing
significant additional detail and demonstrating how to do this
in an automated and online manner.

Researchers have also looked at utilizing logs other than
system logs, such as application console logs [22]. However,
this technique is limited to application specific anomalies and
requires source code, which may not be available for propri-
etary systems. In another related work Salfner and Tschirpke
used Levenshtein Distance to preprocess error messages in
a commercial telecommunication system [15], before passing
them into a failure prediction tool.

VI. CONCLUSION

The large size and complexity of supercomputers makes
them difficult to manage. Containing hundreds to tens of thou-
sands of nodes, Terabytes of memory, Petabytes of storage and
complex network topologies, these systems can exhibit a very
wide variety of complex behaviors that result in performance
degradation and component failure. System logs are commonly
used by operating systems to record important informational
and alert messages from various software and hardware com-
ponents such as daemons, applications and drivers. Because
they contain key status details about the health of many
system components, they represent an invaluable resource for
understanding the status of large systems, which can help make
them easier to manage. However, their poor semantics and
the overwhelmingly large size of the combined logs of all
supercomputer nodes severely limits the usefulness of these
system logs to system administrators.

This paper presents a foundational study on identifying
the structure of the basic units of system logs: messages
from system components. We examined various properties
of log messages including the distribution of the individual
message terms and structures, identifying previously unknown
statistical properties such as the fact that message words follow
a double-exponential distribution rather than the expected



TABLE VII
EXAMPLES OF SOME OF THE TEMPORALLY CORRELATED LOG-STRUCTURES EXTRACTED FOR bgl LOGS

Cluster id Temporally-correlated log-structures
1 A node card failure event

LINKCARD INFO MidplaneSwitchController performing bit sparing on R25-M1-L0-U22 - <hex>bit <num>
HARDWARE SEVERE LinkCard power module U58 is not accessible
DISCOVERY SEVERE Problem communicating with service card,ido chip: . . .
java.io.IOException:Could not find EthernetSwitch on port:address . . .
HARDWARE WARNING PrepareForService is being done on this part(mLctn(R73-M1-N7),mCardSernum(<hex>),. . . by root

2 Multi-line, correlated due to shared interrupt
KERNEL FATAL auxiliary processor <int>
KERNEL FATAL byte ordering exception <int>
KERNEL FATAL data store interrupt caused by <word,*><int>
KERNEL FATAL program interrupt: <word,*>..<int>
KERNEL FATAL store operation <int>
KERNEL FATAL program interrupt: fp cr <word,*><int>
KERNEL FATAL exception syndrome register: <hex>
KERNEL FATAL machine check: i-fetch <int>

3 Restart of a module
MMCS INFO idoproxydb has been started: $Name: <word,V1R1M0*>$ Input parameters: -enableflush -loguserinfo db.properties BlueGene1
MMCS INFO ciodb has been restarted.
BGLMASTER INFO BGLMaster has been started: ./BGLMaster –consoleip <ip add>–consoleport <int>–configfile bglmaster.init –autorestart y
MMCS INFO mmcs db server has been started: ./mmcs db server –useDatabase BGL –dbproperties serverdb.properties –
iolog /bgl/BlueLight/logs/BGL –reconnect-blocks all –shutdown-timeout <int>

4 Possibly a multi-line message
CMCS INFO Running as background command
CMCS INFO Controlling BG/L rows [ <int><int><int><int><int><int><int><int>]
CMCS INFO Starting SystemController

power-law. We analyzed the syntactic structure of messages
by developing a novel textual clustering algorithm that groups
messages according to their structures. We then showed that
the discovered structures were the semantically meaningful
units of system logs by developing an online message clas-
sification algorithm that can accurately replicate the message
annotation decisions made manually by system administrators.
Finally, we used temporal clustering to identify correlations
between message occurrence times, discovering new features
in the log, including complex events and multi-line messages.

The fundamental contribution of this work is to identify the
basic informational units that system logs are composed of.
Our techniques thus enable a wide variety of future sophisti-
cated system log analysis, providing them with log entries that
have significantly richer semantic properties than traditional
textual log lines. Our two example analyzes, alert classification
and temporal clustering, prove the basic usefulness of our
approach and point the way to future techniques that will
further leverage this work.
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